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ABSTRACT

We apply a method of Linshtedt, also called improved expansion, to solve the equations
of motion and obtain single-particle trajectories of electrons moving in crossed static
magnetic fields of a hybrid non-relativistic free electron laser. Making use of a natural
small parameter, the ratio of the amplitude of spatially periodic magnetic field and the
guide magnetic field, one can re-write the motion equations for an electron in a form,
which allows their solution by an asymptotic series. In such a way the non-linear
frequency shifts and renormalized mean electron velocity are calculated analytically.
The analytical results are in a good compared with numerical simulations of the electron
trajectories.

INTRODUCTION

Initial analysis of properties of an electron-optical system (EOS) is performed in the
approximation of geometrical optics. Namely, for unneutralised electron beam in
external magnetic fields it customary to study in succession single-particle
approximation, approximation of magneto-hydrodynamics and, finally, kinetic equation
formalism. It turns out that even rough single-particle approximation can provide
valuable insights into basic dynamics of an electron beam propagating along the studied
EOS.
Attempts to find analytical expressions for description of single particle trajectories go
back to the 1970s [1-3]. However, no one approach, going further the zero-
approximation expression for the helical magnetic field setup [4] and the well-known
formulas for the equations of mathematical pendulum in the case of absence of the
guide magnetic field, has been presented [5]. This situation is rather unfortunate, since
in the case of a free electron laser (FEL) with a giuding magnetic field [6,7] at non-
relativistic and intermediate energies (< 600 keV) such an expression could be very
helpful. It can provide a qualitative analysis because of relative accessibility of the
necessary values of the guiding magnetic fields for the utilization of resonances on the
characteristic pump field and cyclotron frequencies.
In the present contribution we present an analytical solution by an asymptotic series of
the problem of an electron motion in the harmonic transversal undulator magnetic field
and strong, but finite, longitudinal magnetic field.
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IMPROVED EXPANSION

Consider the electron motion in the following static magnetic field:

H = [0,-H, sin(2nz / l),-H1.

Here I is the space period of the transverse to the injection direction static magnetic
field. Non-relativistic equations of motion of an electron take the form

di7, e
m° dt c

where mo is the electron's rest mass. e is the absolute value of its charge and ý is the
electron's velocity vector. Let us also introduce the following notations:
v = Oot , yo = /a !C1/ , C = 01 / 0)I) , 00 =2)-1 Iv I, col = eH, /I moc, Co1 =eeHl /moc,

ý=x/l, rl= y/l, ý=z/l,

where v,, is the z-component of the initial velocity of the electrons,

d4/dr[r = 0] = 1/2z and the rest of the initial values of the velocities and coordinates

are equal to zero. Thus we can write the non-linear equations of motion in the
dimensionless form

d +7o = -cd- sin(2v4), d 0 = edsin( )dr, dy 0 =. (1)
dv2  d- dv 0 dv d o

Here y, is the dimensionless oscillation frequency and 50 = dl/dr[r = 0]. It is easily

seen that the first two equations of the system (1) define the dynamics of electrons
completely.
We are interested in analytical solutions for the dimensionless frequency y, greater

than 2 and the values of - less than 1/2. According to the Linshtedt method [8,9], we
shall expand ý(v), i7(v), ý(r), the true nonlinear-shifted frequency Y and mean

electron velocity 5 into series in e:

ý(_) = ý0 (vZ) + •1 (YT) + eC'2 (yv) + £C3 0(yv) + Ce4 0(yr) +...
•(,C) =o(YZ,) + 0ý, (yr-) + C 2 ý2 (YT) + cC'41()/) + C'ý4.(21r) +..

r = 0(1+ 4 _+2.f, + + ,. ..

5 =(50(1 1 + eg, + E2 8 + Cg 3 + C4g 9 +...)

Equating coefficients at each order of 8 for the system of equations (1), we find
linearized sets for the functions and coefficients of (2). These sets are iterative linear
non-homogeneous systems of equations, which are integrated one after another.

To o( ) order the solutions have the form

2;T,5 2 c5 2 - {sin[lyr] - (y,/ 27r)sin[2ZTSr]},
yi 2 - (27,5)2J

22)7-(y22 {1 - cos[yr] - (y / 216)2 (1- cos[2ffS7])}, (2)7l~z) = [7:- (27r) ]

)T,5-2 J 2 sinL[4r-r] sin[(y + 2w7)r] sil[(Q' - 21r(5)r]' ( 57= -+ I - - +
)/--(2;T5)2  16)T28 2  y+2r5 y--23 J'

The frequency y/ and the average electron velocity 3, up to the same order, are
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Y=7o +!12 -i)2' ,[1 (2)2 1 (3)

We have accomplished the calculations to the next meaningful order, o( c6). They show
that there exist a number of resonances at odd ratios

Fl co/ oo0 • 7 / 2r = 2k + 1, kZ. (4)

In the limit yo -- 0 formulas (2) and (3) provide the trajectories in the FEL without the
guide magnetic field (e.g. [5, p. 37]). They as well confirm the assertions on the form of
one-body trajectories of electrons in such ideal FEL magnetic field, which are usually
made in the literature (cf. [1-3]).
Since in the trajectory approximation the vector potential and components of
electromagnetic field in the wave zone are dependent on the time derivatives of the
electron coordinates, one can expect that resonances existing in those expressions will
also be present for the power of the spontaneous emission. These higher resonances one
would expect to observe for experimentally accessible values of the guide magnetic
field.
Numerical simulations accomplished by us for the initial system of integro-differential
equations (1) verified these analytic solutions to the accuracy of 1%.

CONCLUSIONS

As a result of this work, we are able to provide analytical solutions for electron
trajectories in an ideal hybrid free electron laser-oscillator and calculate dependence of
the trajectories on the parameters of the pumping magnetic fields. We have also
prepared the machinery for treating the real undulator magnetic field. Thus one will be
able to calculate the polar pattern of the emitted radiation in the single particle
approximation in the both cases.
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